

A Denoising Hybrid Model for Anomaly Detection in Trajectory Sequences

Maria Liatsikou, Symeon Papadopoulos, Lazaros Apostolidis and Ioannis Kompatsiaris

Maria Liatsikou maria_liatsikou@iti.gr

BIG MOBILITY DATA ANALYTICS (BMDA 2021)

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

Introduction

Anomaly detection in trajectory data

What is trajectory? $T_i = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$

Introduction

Anomaly detection in trajectory data

What is trajectory?

 $T_i = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$

What is an anomalous trajectory?

One that is different compared to others with respect to some kind of similarity

- ➢ not uniformly defined
- context dependent

[Meng et al., 2019]

Introduction

Anomaly detection in trajectory data

What is trajectory?

 $T_i = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}$

What is an anomalous trajectory?

One that is different compared to others with respect to some kind of similarity

- ➢ not uniformly defined
- context dependent

Applications:

- ➤ traffic monitoring and management
- ➢ public safety
- ➤ surveillance

Related Work

Most trajectory anomaly detection methods rely on [Gupta et al., 2013; Bhowmick & Narvekar, 2018] :

- Distance (trajectories with not many neighbors)
 [Lee at al., 2008]
- Density (trajectories with low density) [Fontes at al., 2013]
- Historical similarity (temporal outlier detection)
 [Li at al., 2009]
- Classification (machine learning classification models e.g. Isolation Forest, Neural Autoencoders)
 [Zhang et al., 2011; Bouritsas et al., 2019]

Problem Definition

Given a set of trajectories $T_i = \{(x_1, y_1), (x_2, y_2), ..., (x_m, y_m)\}$:

Our goal:

The unsupervised spatiotemporal detection of anomalies in the dataset

- without explicit description of normal patterns
- > capturing the temporal dependencies of trajectory data

Problem Definition

Given a set of trajectories $T_i = \{(x_1, y_1), (x_2, y_2), ..., (x_m, y_m)\}$:

Our goal:

The unsupervised spatiotemporal detection of anomalies in the dataset

- without explicit description of normal patterns
- > capturing the temporal dependencies of trajectory data

Our contributions:

- > A hybrid architecture: a sequential denoising autoencoder with a density-based model
- two variants of LSTM autoencoders trained by minimizing a Haversine distance-based weighted loss function

Models

Denoising LSTM Autoencoders

- > Aim: reproduce the input sequence by minimizing the reconstruction error
- > Anomalies: instances with high reconstruction error

Models

Denoising LSTM Autoencoders

- > Aim: reproduce the input sequence by minimizing the reconstruction error
- > Anomalies: instances with high reconstruction error

Two components:

- encoder—sequence compression into a latent vector
- decoder—input reconstruction from the latent representation

Models

Denoising LSTM Autoencoders

- > Aim: reproduce the input sequence by minimizing the reconstruction error
- > Anomalies: instances with high reconstruction error

Two components:

- encoder—sequence compression into a latent vector
- decoder—input reconstruction from the latent representation

Two variants of denoising LSTM Autoencoders:

- ► LSTM: Encoder → Encoder's output → Copy m times → LSTM decoder → Dense layer → Final output
- SEQ: Encoder → Hidden state vector updated at every timestep → LSTM decoder → Dense layer → Final output

Loss function

$$L_{HVR} = \frac{1}{2|I|} \sum_{i} \sum_{t} \left[(xi(t) - xir(t))^2 + (y_i(t) - yir(t))^2 \right] * w_i$$

w_i: log haversine distance covered by trajectory

Loss function

$$L_{HVR} = \frac{1}{2|I|} \sum_{i} \sum_{t} \left[(xi(t) - xir(t))^2 + (y_i(t) - yir(t))^2 \right] * w_i$$

w_i: log haversine distance covered by trajectory

Anomaly detection

Apply two methods on the reconstruction errors of unseen trajectories:

- > AVG: Trajectories ranked by the average of their reconstruction errors
- LOF: We propose applying Local Outlier Factor algorithm on error sequences

Loss function

$$L_{HVR} = \frac{1}{2|I|} \sum_{i} \sum_{t} \left[(xi(t) - xir(t))^2 + (y_i(t) - yir(t))^2 \right] * w_i$$

w_i: log haversine distance covered by trajectory

Anomaly detection

Apply two methods on the reconstruction errors of unseen trajectories:

- > AVG: Trajectories ranked by the average of their reconstruction errors
- > LOF: We propose applying Local Outlier Factor algorithm on error sequences

How does LOF work?

- Density-based outlier detection
- > Anomalies have much lower local densities than the average of their *k* nearest neighbors

Dataset

Porto Taxi Dataset [Mendes-Moreira & Moreira-Matias, 2015] 442 taxis; 01/07/2013 - 30/06/2014 (1.7M trips) Finally, 1.2M sequences of 9 pairs of (longitude, latitude)

Dataset

Porto Taxi Dataset [Mendes-Moreira & Moreira-Matias, 2015] 442 taxis; 01/07/2013 - 30/06/2014 (1.7M trips) Finally, 1.2M sequences of 9 pairs of (longitude, latitude)

Test set

- ➤ 10% of dataset
- > 1% of test set altered to generate synthetic anomalies

Dataset

Porto Taxi Dataset [Mendes-Moreira & Moreira-Matias, 2015] 442 taxis; 01/07/2013 - 30/06/2014 (1.7M trips) Finally, 1.2M sequences of 9 pairs of (longitude, latitude)

Test set

- ➢ 10% of dataset
- > 1% of test set altered to generate synthetic anomalies

Method	Variant	Description	Pattern
DETDT	DSTRT _c	Complete noise	[0,8,1,7,2,6,3,5,4]
DSIKI	DSTRT _p	Light noise	[0,1,2,4,3,5,6,7,8]
	CYCLE _c	Same route twice	[0,1,2,3,0,1,2,3,4]
	CYCLE _b	Back and forth	[3,4,5,4,3,4,5,4,3]

Model Comparison

<u>Models</u>

- ➤ LSTM_m & SEQ_m (MSE loss)
- ➤ LSTM_h & SEQ_h (weighted MSE loss)
- Baselines: Naïve Random Ranking (NRR); LOF; Feed-Forward Autoencoder (FF)

Model Comparison

<u>Models</u>

- ➤ LSTM_m & SEQ_m (MSE loss)
- > LSTM_h & SEQ_h (weighted MSE loss)
- Baselines: Naïve Random Ranking (NRR); LOF; Feed-Forward Autoencoder (FF)

Evaluation

- Rank-based
- Trajectories ranked by anomaly factor
 - Autoencoders: rank reconstruction errors (MSE) using AVG or LOF method
 - LOF: rank LOF scores of trajectories
- Artificially generated outliers should be ranked higher
- ➢ F1 measure at k=5%

Trajectory Reconstruction

Models	FF	LSTM _m	SEQ _m	LSTM _h	SEQ _h
MSE	8.726*10 ⁻⁶	4.112*10 ⁻⁶	4.968*10 ⁻⁶	3.908*10 ⁻⁶	4.286*10-6

- Sequential models have better reconstruction ability than FF
- Haversine-weighted loss function decreases error

Anomaly Detection

	_	DSTRT				CYCLE			
		DSTRT _c		DSTRTp		CYCLEc		CYCLEb	
(%)		AVG	LOF	AVG	LOF	AVG	LOF	AVG	LOF
e (%	NRR	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67
leasur	LOF	-	28.72	-	4.49	-	7.39	-	7.39
	FF	18.30	27.38	2.90	5.88	1.56	5.96	2.87	15.48
7	$LSTM_m$	27.88	30.37	5.03	8.59	6.13	7.36	8.18	9.55
μ.	SEQm	25.14	30.20	4.13	8.23	4.13	8.70	5.25	10.89
	$LSTM_{h}$	28.18	30.64	5.17	7.88	6.67	7.60	8.54	9.77
	SEQ _h	26.70	31.30	4.65	8.43	5.55	8.51	6.26	9.25

- Sequential models outperform FF & LOF in most cases
- The Hybrid architecture (LOF applied on reconstruction errors) improves performance in all autoencoders
- Haversine-weighted function outperforms MSE in 13 of 16 cases

Anomaly Detection

Variation of F1 measure over k (for LSTM & SEQ models)

> The Hybrid architecture HVR+LOF gives better results in most cases than MSE+AVG approach

Qualitative Analysis

- > SEQ_m + AVG compared to SEQ_h + LOF on our real test set
- > One set of the top 0.1% of the trajectories wrt reconstruction error for each model
- > Two annotators annotated the trajectories predicted by only one model

Qualitative Analysis

- > SEQ_m + AVG compared to SEQ_h + LOF on our real test set
- > One set of the top 0.1% of the trajectories wrt reconstruction error for each model
- > Two annotators annotated the trajectories predicted by only one model

Models	Accuracy		
SEQ _m + AVG	9.5%		
SEQ _h + LOF	51.7%		

Qualitative Analysis

Anomalies detected only by SEQ_m + AVG method

Qualitative Analysis

Anomalies detected only by SEQ_h + LOF method

> Our Hybrid approach captures different patterns of anomalies

Conclusion

Summary

- > Hybrid approach: Sequential denoising autoencoder + density-based algorithm
- Haversine-weighted loss function
- Rank-based evaluation

Conclusion

Summary

- > Ensemble approach: Sequential denoising autoencoder + density-based algorithm
- Haversine-weighted loss function
- Rank-based evaluation

Future Work

- More datasets (e.g. bike sharing data)
- Annotated real data
- Transfer learning across different datasets

References

[1] Bhowmick, K., & Narvekar, M. (2018). Trajectory outlier detection for traffic events: A survey. In *Intelligent Computing and Information and Communication* (pp. 37-46). Springer, Singapore.

[2] Bouritsas, G., Daveas, S., Danelakis, A., & Thomopoulos, S. C. (2019, September). Automated Real-time Anomaly Detection in Human Trajectories using Sequence to Sequence Networks. In 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) (pp. 1-8). IEEE.

[3] Fontes, V. C., de Alencar, L. A., Renso, C., Bogorny, V., & Pisa, I. (2013). Discovering Trajectory Outliers between Regions of Interest. In *GeoInfo* (pp. 49-60).

[4] Gupta, M., Gao, J., Aggarwal, C. C., & Han, J. (2013). Outlier detection for temporal data: A survey. IEEE Transactions on Knowledge and Data Engineering, 26(9), 2250-2267.

[5] Lee, J. G., Han, J., & Li, X. (2008, April). Trajectory outlier detection: A partition-and-detect framework. In 2008 IEEE 24th International Conference on Data Engineering (pp. 140-149). IEEE.

[6] Li, X., Li, Z., Han, J., & Lee, J. G. (2009, March). Temporal outlier detection in vehicle traffic data. In 2009 IEEE 25th International Conference on Data Engineering (pp. 1319-1322). IEEE.

[7] Mendes-Moreira, J., & Moreira-Matias, L. (2015, September). On learning from taxi-GPS traces. In *Proceedings of the 2015th International Conference on ECML PKDD Discovery Challenge-Volume 1526* (pp. 37-39). CEUR-WS. org.

[8] Meng, F., Yuan, G., Lv, S., Wang, Z., & Xia, S. (2019). An overview on trajectory outlier detection. Artificial Intelligence Review, 52(4), 2437-2456.

[9] Zhang, D., Li, N., Zhou, Z. H., Chen, C., Sun, L., & Li, S. (2011, September). iBAT: detecting anomalous taxi trajectories from GPS traces. In *Proceedings of the 13th international conference on Ubiquitous computing* (pp. 99-108).

Thank you!

Acknowledgements

This research was co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH - CREATE - INNOVATE (project code:T1EDK-04582)

https://change.iti.gr/change/

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης